Alternative promoter use in eye development: the complex role and regulation of the transcription factor MITF.
نویسندگان
چکیده
During vertebrate eye development, the transcription factor MITF plays central roles in neuroepithelial domain specification and differentiation of the retinal pigment epithelium. MITF is not a single protein but represents a family of isoforms generated from a common gene by alternative promoter/exon use. To address the question of the role and regulation of these isoforms, we first determined their expression patterns in developing mouse eyes and analyzed the role of some of them in genetic models. We found that two isoforms, A- and J-Mitf, are present throughout development in both retina and pigment epithelium, whereas H-Mitf is detected preferentially and D-Mitf exclusively in the pigment epithelium. We further found that a genomic deletion encompassing the promoter/exon regions of H-, D- and B-Mitf leads to novel mRNA isoforms and proteins translated from internal start sites. These novel proteins lack the normal, isoform-specific N-terminal sequences and are unable to support the development of the pigment epithelium, but are capable of inducing pigmentation in the ciliary margin and the iris. Moreover, in mutants of the retinal Mitf regulator Chx10 (Vsx2), reduced cell proliferation and abnormal pigmentation of the retina are associated with a preferential upregulation of H- and D-Mitf. This retinal phenotype is corrected when H- and D-Mitf are missing in double Mitf/Chx10 mutants. The results suggest that Mitf regulation in the developing eye is isoform-selective, both temporally and spatially, and that some isoforms, including H- and D-Mitf, are more crucial than others in effecting normal retina and pigment epithelium development.
منابع مشابه
The Role of MITF Phosphorylation Sites During Coat Color and Eye Development in Mice Analyzed by BAC Transgene Rescue
The microphthalmia-associated transcription factor (Mitf) has emerged as an important model for gene regulation in eukaryotic organisms. In vertebrates, it regulates the development of several cell types including melanocytes and has also been shown to play an important role in melanoma. In vitro, the activity of MITF is regulated by multiple signaling pathways, including the KITL/KIT/B-Raf pat...
متن کاملThe role of MITF phosphorylation sites during coat color and eye development in mice analyzed by bacterial artificial chromosome transgene rescue.
The microphthalmia-associated transcription factor (Mitf) has emerged as an important model for gene regulation in eukaryotic organisms. In vertebrates, it regulates the development of several cell types including melanocytes and has also been shown to play an important role in melanoma. In vitro, the activity of MITF is regulated by multiple signaling pathways, including the KITL/KIT/B-Raf pat...
متن کاملBPTF transduces MITF-driven prosurvival signals in melanoma cells.
Microphthalmia-associated transcription factor (MITF) plays a critical and complex role in melanocyte transformation. Although several downstream targets of MITF action have been identified, the precise mechanisms by which MITF promotes melanocytic tumor progression are incompletely understood. Recent studies identified an oncogenic role for the bromodomain plant homeodomain finger transcriptio...
متن کاملGene regulation network fitting of genes involved in the pathophysiology of fatty liver in the mice by promoter mining
Background and Aim: Non-Alcoholic Fatty Liver Disease (NAFLD) is the major cause of chronic liver disease in developed countries. In this study, we identified the most important transcription factors and biological mechanisms affecting the incidence of fatty liver disease using the promoter region data mining. Materials and Methods In this study, at first, the marker genes associated with this...
متن کاملRegulation of the human tyrosinase gene in retinal pigment epithelium cells: the significance of transcription factor orthodenticle homeobox 2 and its polymorphic binding site
PURPOSE Tyrosinase is the rate-limiting enzyme responsible for melanin biosynthesis in the retinal pigment epithelium (RPE) of the eye. Melanin has an important role in retinal development, function, and protection against light-induced oxidative stress, and melanin levels are associated with age-related macular degeneration (AMD). Because the levels of and protection afforded by melanin seem t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Development
دوره 135 6 شماره
صفحات -
تاریخ انتشار 2008